Genetics and Health Testing

Dr Joanna J. Ilska

Talk Outline

1. Genetic basis of disease
2. Hip and Elbow Dysplasia - KC/BVA Scheme data for BMD
3. Estimated Breeding Values (EBVs)
4. Genetic diversity

Genetic basis of disease

Genetic basis of variability

Genetic basis of variability

1. Growth, life cycle \rightarrow new cells (including reproductive cells) \rightarrow DNA needs to be replicated

Fertilization

Morula

Zygote

Blastocyst

Embryo 4 cell stage

Embryo

Genetic basis of variability

1. Mutation:

2. May change the protein the DNA codes for:
3. Mostly deleterious
4. Some can be beneficial
5. May be silent - neutral (no effect)

Basic terms

- Allele - a single copy of a gene. Different alleles are created through mutation
- Each individual has 2 alleles of each gene - the pair is called a genotype

Basic terms

- Allele - a single copy of a gene. Different alleles are created through mutation
- Each individual has 2 alleles of each gene - the pair is called a genotype

Basic terms

- Allele - a single copy of a gene. Different alleles are created through mutation
- Each individual has 2 alleles of each gene - the pair is called a genotype
- Visible/measurable characteristic - phenotype

> Dog's Genotype - a set of genotypes across all genes

Single gene traits

1. Simplest scenario:

1. Phenotype completely controlled by a single gene
2. Bi-allelic - only two alleles possible (e.g. ' B ' - black coat, 'b' - brown coat)
3. Recessive - two copies of the mutant allele needed for the mutation to change the phenotype (dog's coat visibly brown)

Single gene traits

1. 1 gene $\rightarrow 2$ alleles $\rightarrow 3$ possible genotypes:
2. BB - normal, black coat
3. Bb-carrier, black coat, but can pass brown to progeny

4. bb - both alleles are mutant, brown coat

Punnett Square

Polygenic traits

1. The number of possible genotype combinations increases with the number of genetic variants involved

Number of unique genotypes $=3^{\text {number of genes }}$

\# Genes	\# Genotypes
1	3
3	27
5	243
10	59,049

Punnett Square

Polygenic traits

1. The number of possible genotype combinations increases with the number of genetic variants involved
2. The effects of individual genes are typically very small - total genetic value is the sum of individual gene effects

Polygenic traits

1. The number of possible genotype combinations increases with the number of genetic variants involved
2. The effects of individual genes are typically very small - total genetic value is the sum of individual gene effects

- The same effect produced by many combinations of genotypes

Polygenic traits

1. The number of possible genotype combinations increases with the number of genetic variants involved
2. The effects of individual genes are typically very small - total genetic value is the sum of individual gene effects

- The same effect produced by many combinations of genotypes

Polygenic traits

1. The number of possible genotype combinations increases with the number of genetic variants involved
2. The effects of individual genes are typically very small - total genetic value is the sum of individual gene effects
3. Frequently affected by environment

Heritability (h^{2})

- Heritability - how much of the variation we see in the trait can be explained by genetics?
- $\boldsymbol{h}^{2}=0 \% \rightarrow$ all variation comes from environment
- $\boldsymbol{h}^{2}=100 \% \rightarrow$ all variation comes from genetics

Heritability (h^{2})

- Heritability - how much of the variation we see in the trait can be explained by genetics?
- $\boldsymbol{h}^{2}=0 \% \rightarrow$ all variation comes from environment
- $\boldsymbol{h}^{2}=100 \% \rightarrow$ all variation comes from genetics
- Heritability is a parameter of a "trait in a population", not an absolute value for the trait!

Identical genetics (twins, clones)
 $h^{2} \sim 0 \%$
 Environment ~ 100\%
 Genes ~0\%

Hip and Elbow Dysplasia in BMD

Hip dysplasia (HD)

- Developmental orthopaedic disorder of the hip joint
- Malformation and laxity of the joint lead to osteoarthritis (OA)
- OA is irreversible

Elbow dysplasia (ED)

- Developmental orthopaedic disorder of the elbow joint
- Primary lesions:

- Fragmented or ununited medial coronoid process (FCP)
- Osteochondritis dissecans (OCD or OD)
- Ununited anconeal process (UAP)
- Primary lesions lead to OA, which is irreversible

HD/ED in BMD

1. Hip Dysplasia - OR $=7.2$
2. Elbow Dysplasia:
3. $\mathrm{FCP} \mathrm{OR}=140$
4. $\mathrm{UAP} O R=50$

LaFond, E., Breur, G. J., \& Austin, C. C. (2002). Breed susceptibility for developmental orthopaedic diseases in dogs. Journal of the American Animal Hospital Association, 38(5), 467-477.

Odds ratio (OR):

OR >1, breed more at risk of developing condition than control
$O R=1$, breed at the same risk as control
$\mathrm{OR}<1$, breed less likely to develop the condition than control

BVA/KC Hip/Elbow Dysplasia Schemes

- Xray of dogs when >1 year old (at GP vets)
- Xray sent to BVA
- Panel of scrutineers - specialists

BVA/KC Hip/Elbow Dysplasia Schemes

Hip Dysplasia

- Range 0 - 53 per hip, 0 - 106 total

CERTIFICATE OF SCORING

Elbow Dysplasia

- Grades:
- 0 - radiographically normal
- 1 - Mild osteoarthritis (OA)
- 2 - Moderate or a primary lesion with no OA
- 3 - Severe OA or a primary lesion with OA

BVA/KC Hip Dysplasia Scheme

BVA/KC Hip Dysplasia Scheme

BVA/KC Elbow Dysplasia Scheme

Bernese Mountain Dog Elbow grades (all)

BVA/KC Elbow Dysplasia Scheme

Genetics of Hip and Elbow Dysplasia

Genetics - focus for breeders!

Heritability

- Heritability - how much of the variation we see in the trait can be explained by genetics?
- $\boldsymbol{h}^{2}=0 \% \rightarrow$ all variation comes from environment
- $\boldsymbol{h}^{2}=100 \% \rightarrow$ all variation comes from genetics
\boldsymbol{h}^{2} of HD in BMD
37%

```
h}\mp@subsup{\boldsymbol{h}}{}{2}\mathrm{ of ED in BMD
    27%
```


Heritability

- Heritability - how much of the variation we see in the trait can be explained by genetics?
- $\boldsymbol{h}^{2}=0 \% \rightarrow$ all variation comes from environment
- $\boldsymbol{h}^{2}=100 \% \rightarrow$ all variation comes from genetics

$$
\begin{gathered}
\boldsymbol{h}^{2} \text { of HD in BMD } \\
37 \%
\end{gathered}
$$

```
h}\mp@subsup{\boldsymbol{h}}{}{2}\mathrm{ of ED in BMD
    27%
```

"Only 37\% of your dog's hip score is due to genetics"

Heritability

- Heritability - how much of the variation we see in the trait can be explained by genetics?
- $\boldsymbol{h}^{2}=0 \% \rightarrow$ all variation comes from environment
- $\boldsymbol{h}^{2}=100 \% \rightarrow$ all variation comes from genetics

$$
\begin{gathered}
\boldsymbol{h}^{2} \text { of HD in BMD } \\
37 \%
\end{gathered}
$$

```
h}\mp@subsup{\boldsymbol{h}}{}{2}\mathrm{ of ED in BMD
    27%
```


37% of the variation in the hip score
in the breed can be explained by
genetics

Genetics of hip/elbow dysplasia

1. Genes involved:
2. Conformation of the hip and elbow joint
3. Laxity
4. Growth and maturity rates - hormonal activity?
5. Bone mass and density?
6. Muscle development?
7. Cartilage matrix composition?
8. (Temperament? Preferred activities? Appetite?)

Complex Traits

Complex Traits

Genetic predisposition \mid

Environment throughout development

Hip score / Elbow grade

Prevalence and inheritance of and selection for elbow arthrosis in Bernese Mountain Dogs and Rottweilers in
Sweden and benefits:cost analysis of a screening and Sweden and benefits:cost analysis of a screening and control program

Swenson et al (1997)

	\% with ED	\% with severe ED
Grade $0 \times$ Grade 0	31	11
Grade $0 \times$ Grade 1	44	19
Grade $0 \times$ Grade ≥ 2	56	27
Grade $\geq 2 \times$ Grade ≥ 2	59	29
Grade $0 \times$ Not tested	40	18
Not tested \times Not tested	60	32
Grade $\geq 2 \times$ Not tested	51	29

Complex Traits

How the Orthopedic Foundation for Animals (OFA) is tackling inherited disorders in the USA: Using hip and elbow dysplasia as examples
G. Gregory Keller ${ }^{\text {a,*, }}$, Edmund Dziuk ${ }^{\text {a }}$, Jerold S. Bell ${ }^{\text {a,b }}$

Fig. 1. Relationship of Combined Parent Score to percentage of hip dysplastic progeny.

Phenotypic selection

1. Use in breeding only dogs with hip score <10, ideally elbow grade 0

BVA/KC Hip Dysplasia Scheme

BVA/KC Elbow Dysplasia Scheme

Estimated Breeding Values

EBVs

EBVs - primary tool in livestock breeding

1. More accurate estimation of the genetics - more precise selection, better response to selection

J. Dairy Sci. 100:10292-10313 https://doi.org/10.3168/jds.2017-12959
J. Anim. Sci. 2013.91:2575-2582 doi:10.2527jas2012-5990

Mortality

Year

Zuidhof et al., 2014 Poultry Science 93:2970-2982
Strain
od

\int_{1}^{1978}
2005

28 d

Know your line!

1. Genetic variation \rightarrow resemblance between relatives
2. The degree of similarity \sim degree of relationship

Know your line!

Know your line!

Fido
Mild hip dysplasia

Excellent hips

Mild hip dysplasia

EBVs - know your pedigree!

Estimated Breeding Values (EBVs)

1. Breeding value - how does offspring of an individual compare to the mean of the population? By how much?

Estimated Breeding Values (EBVs)

1. Breeding value - how does offspring of an individual compare to the mean of the population? By how much?
2. "Genetic merit" of an individual - can be used to predict phenotype, but it doesn't account for environment! Dogs with the same EBV could have different phenotypes!

Phenotype

Estimated Breeding Values (EBVs)

1. Breeding value - how does offspring of an individual compare to the mean of the population? By how much?
2. "Genetic merit" of an individual - can be used to predict phenotype, but it doesn't account for environment! Dogs with the same EBV could have different phenotypes!

How to use EBVs

1. Used to rank individuals
2. Selecting individuals that are better than the breed average not necessary to select the "best of the best" (easier to avoid popular sires!)

3. Gradual improvement

Confidence of EBVs

1. EBVs are calculated for all dogs in pedigree
2. Confidence - correlation between EBV and True BV
3. Confidence of the EBVs varies between dogs, depending on amount of information

EBVs at The Kennel Club

1. EBVs for HD and ED produced since 2014
2. Both HD and ED EBVs available for BMDs

[^0]
Using EBVs in practice

Using EBVs in practice

Breed median hip score
$=10$

Hip

Score: $1 / 3=4$
Confidence: 96\%

Using EBVs in practice

Breed median hip score
$=10$

EBV does NOT replace hip

 scoring/elbow grading!

EBV does NOT replace hip scoring/elbow grading!

You can't improve what you don't measure!

Hip scoring and elbow grading:

- Improves the knowledge about your own dog
- Provides basic information on whether your dog is a good breeding candidate
- Improves your breeding program
- Optics

EBV does NOT replace hip scoring/elbow grading!

You can't improve what you don't measure!

Hip scoring and elbow grading:

- Improves the knowledge about your own dog
- Provides basic information on whether your dog is a good breeding candidate
- Improves your breeding program
- Optics

By testing your dog, you improve the accuracy of EBVs for all dogs in your line, but also for all other relatives!

Conclusions

1. Evidence that HD and ED are a problem in Bernese Mountain Dog
2. Declining number of dogs tested
3. HD and ED - complex trait
4. Difficulty in selection - environmental effects
5. EBVs offer a solution

Inbreeding and genetic diversity

Consequences of inbreeding

- Charles Darwin - outcrossing in plants favoured over self-fertilization
- C. Darwin married his first cousin:
- 10 kids
- 3 died early in life

- 3 were infertile

Consequences of inbreeding

1. Major abnormalities
2. Early life mortality
3. Lowered fitness:
4. Survival (infections)
5. Growth rate
6. Fertility

Inbreeding

1. Inbreeding - probability that the two copies of a gene come from the same ancestor

- $\mathbf{2 5} \%$ for offspring of a full sib mating or a parent/offspring mating
- $\mathbf{1 2 . 5 \%}$ for offspring of a half sib mating
- $\mathbf{6 . 2 5 \%}$ for offspring of 1 st cousins
- etc

Inbreeding

1. Inbreeding - probability that the two copies of a gene come from the same ancestor
2. New mutations - mostly deleterious, unknown
3. Inbreeding is NOT inherited

Age of inbreeding

- We all have:
- 2 parents
- 4 grand parents
- 8 great grand parents
- 16 great great grandparents

25 generations ago was the 1300s
To be completely non-inbred we would need
>33.5 million unrelated ancestors

Total human population in 1300's $=\sim 400 \mathrm{M}$

2^{n}

where $n=$ generations back

Age of inbreeding

1. Inbreeding on distant ancestors appears less harmful than on recent ancestors

- Natural selection acts against deleterious mutations - purging selection

Some mutations may remain in
population at low frequencies!

Age of inbreeding

1. Rate of inbreeding $(\Delta \mathrm{F})$ - how quickly is it accumulated over time?
2. High $\Delta \mathrm{F}$ - high loss of diversity
3. $\Delta F=0.5 \%$ sustainable

Danger of popular sire

1. Every individual carries new mutations
2. Most of the time, not a problem, as they are rare and usually recessive
3. If two descendants of the same sire are mated, they could have the same mutation - their offspring could inherit two copies, and fall sick

4. Loss of diversity from other sires

COI at the Kennel Club

Inbreeding Coefficient (COI) lookup Results

1. COI calculator available since 2012

2. Minimise inbreeding in produced litters
3. Breed average:
4. COI calculated for all dogs using complete pedigree
5. Average of the COI calculated for dogs born in previous yea
6. Current breed average for BMD $=3 \%$
https://www.thekennelclub.org.uk/search/inbreeding-co-efficient/
https://www.thekennelclub.org.uk/health-and-dog-care/health/getting-started-with-health-testing-and-screening/inbreeding-calculators/

COI - limitations

1. Retrospective!

UK population

COI - limitations

1. Retrospective!
UK population

$\mathrm{COI}=0 \%$

$$
\mathrm{COI}=12.5 \%
$$

COI - limitations Pedigree depth

$$
\mathrm{COI}=0 \%
$$

COI - limitations Pedigree depth

Bernese Mountain Dog population

1. Complete pedigree

- 31K dogs in total
- 26K dogs in litter registrations

Bernese Mountain Dog population

1. Imports:

- $1,2 \mathrm{~K}$ total
- 42 countries ($>50 \%$ from top 8 countries)

Country	imports	$\%$ of imports
Poland	526	10%
Belgium	450	9%
Switzerland	341	7%

Bernese Mountain Dog population

Bernese Mountain Dog population

Bernese Mountain Dog population

Bernese Mountain Dog population

- Litter size statistics:
- Range: 1 to 15
- Median: 6
- Mean: 5.5

Bernese Mountain Dog population

1. COI and litter size

Bernese Mountain Dog population

Bernese Mountain Dog population

\qquad
Popular sires

Genetic diversity in Bernese Mountain Dog (UK)

1. Appears to be relatively good - low mean COI
2. Beware of pedigree depth!
3. Avoid popular sires - and their sons!
4. Monitor genetic diversity across the breed
the Kennel club

Breeding for health group responsibility!

Questions

01
 THE KENNELCLUB

[^0]: EBV results last updated 27 July 2022.

